
Towards a Unified Object Storage
Foundation for Scalable Storage Systems

Authors: Cengiz Karakoyunlu, Dries Kimpe,

Philip Carns, Kevin Harms, Robert Ross, Lee Ward

Presenter: Cengiz Karakoyunlu

cengiz.k@uconn.edu

September 27, 2013

mailto:cengiz.k@uconn.edu

What is object-based storage?

 Popular alternative to traditional block-based storage

 Stores and accesses data in objects, logical collection of
bytes with numerical identifiers

 Easy data management

 Decouples storage systems from underlying hardware
resources

 Various data models can be built on top of object-based
storage

 Typically implemented as a software interface, although
featured as a device level interface

2

Why do we need a new object-storage interface?

 Large scale object-storage
systems are generally tailored
to specific use cases

 Cannot easily reuse them in
different use cases

 Difficult to maintain a
common storage pool for
different applications

 Proposing Advanced Storage
Group (ASG) interface;

– Unifies the features necessary
to meet the requirements of
common data models

– Provides a foundation for
common storage use cases

3

Common data model requirements

Shared Distinguishing

H
ig

h

P
e
rf

o
rm

a
n

ce

S
ca

la
b

il
it

y

F
a
u

lt
 T

o
le

ra
n

ce

C
o

n
cu

rr
e
n

t
R

e
a
d

 A
cc

e
ss

C
o

n
cu

rr
e
n

t
W

ri
te

 A
cc

e
ss

S
y

n
ch

ro
n

iz
a
ti

o
n

P

ri
m

it
iv

e
s

A
to

m
ic

it
y

C
o

m
p

u
te

S
to

ra
g

e
L

o
ca

li
ty

R
e
co

rd

O
ri

e
n

te
d

A
cc

e
ss

Parallel File System

Cloud Object Storage

MapReduce

Key/Value Store

4

Common storage use case (I)

POSIX Directory
– Create , remove, lookup or rename an entry, update metadata of

an entry

– Atomic operations

– Existing object-storage systems typically use additional services
(metadata servers) to support POSIX directory operations

5

Common storage use case (II)

Column-Oriented Key/Value Store
– Each entry is stored in a column

– Each row stores the same data field of an entry

– Shard represents collection of rows

6

Column 0 Column 1 Column 2 Column 3

Shard 1
Row 0 Alice Bob Brad Charles

Row 1 Smith Springfield

Shard 2 Row 0 111-1111 144-1144 321-4321

Common storage use case (III)

HPC Application Checkpoint
 HPC applications periodically write checkpoint data

 Existing checkpointing methods

– N-N

• Each application writes to a separate checkpoint file

• Metadata overhead

– N-1

• Each application writes to a unique checkpoint file

• High concurrency

7

ASG Storage Model Architecture

 Records may contain
zero-length data

 Forks allow to store
related data together

 Containers partition the
system into logical units

 ASG entity identifiers are
not global

 264 records in a fork, 264

forks in an object, 264

objects in a container

8

ASG Storage Model Primitives

9

read

resetprobe

write

write

 Stores data in a sequential range of records

 Overwrites existing data

 Input arguments

– Container, object, fork and record ids

– Local buffer

– Range of records

– Number of bytes going to each record

– Conditional flags

– Version number

 Returns

– Size of written data

– New version number

 Example;

– write (1, 1, 1, 2, 2, 2, “data”, UNTIL, 3)

10

Conditional flags for write

 NONE

– Write should succeed without checking version number or conditional
flags

 ALL

– Write should only succeed if the given version number is greater than
all the version numbers in the specified range

 UNTIL

– Write should continue until it finds a record with a version number
greater than or equal to the given version number

 AUTO

– Given version number is not important

– New data is written with the highest version number in the given range
plus one

 Conditional flags can be combined

11

read

 Retrieves data from a sequential range of records

 Input arguments

– Container, object, fork and record ids

– Local buffer

– Range of records

– Conditional flags

– Version number

• Cannot be used to retrieve older versions

• Only used for conditional execution

– Returns

• Number of records read

• Version number information

 Example;

– read (1, 1, 1, 2, 2, local_buffer, UNTIL, 3)

12

Conditional flags for read

 NONE

– Read should succeed without checking version number or conditional
flags

 ALL

– Read should only succeed if the given version number is greater than
all the version numbers in the specified range

 UNTIL

– Read should continue until it finds a record with a version number
greater than or equal to the given version number

 Conditional flags can be combined

13

reset

 Resets an entity back to its original condition (version 0, no data)

 Can operate on containers, objects, forks and records

 Input arguments

– Container, object, fork and record ids

– Range of records may be specified

– Conditional flags

 Returns

– Number of entities reset

 Example;

– reset (1, 1, 1, 2, 2, ALL, 5)

14

probe

 Returns information about a set of matching items

 Can be called on the entire system, containers, objects or forks

 Input arguments

– Container, object, fork or record ids

– Entity id to start with

– Local buffer to store information

– Maximum number of items to retrieve

 Returned information contains

– Id of the first container, object, fork or record

– Number of containers, objects, forks or records

– Total number of records

– Record version numbers

 Example;

– probe_system(2, local_buffer, 8)

15

How do we meet common data model requirements?

16

Shared Distinguishing

H
ig

h

P
e

rf
o

rm
a

n
ce

S
ca

la
b

il
it

y

F
a

u
lt

 T
o

le
ra

n
ce

C
o

n
cu

rr
e

n
t

R
e

a
d

 A
cc

e
ss

C
o

n
cu

rr
e

n
t

W
ri

te
 A

cc
e

ss

S
y

n
ch

ro
n

iz
a

ti
o

n

P
ri

m
it

iv
e

s

A
to

m
ic

it
y

C
o

m
p

u
te

S
to

ra
g

e
L

o
ca

li
ty

R
e

co
rd

O

ri
e

n
te

d
A

cc
e

ss

Unified byte stream and
key&value storage

Eliminating object
attributes

Record versioning

Conditional operations

Independently
addressable records

Fork structure

Server location

How to use ASG for common storage models? (I)

 Directory entries are represented with
ASG records

 Independently addressable records
and conditional operations prevent
duplicate directory entries and ensure
atomicity

 While creating a entry ASG write()
checks for zero version number

 ASG reset() checks the version number
while removing an entry

 To update the metadata of an entry,
ASG write() checks for non-zero
version number

 While renaming, ASG write() does not
use conditional flags to overwrite new
entry if it already exists

 ASG probe() keeps track of existing
version numbers to identify entries
modified while reading a directory

17

How to use ASG for common storage models? (II)

 Any value in the database table can be references by an object-fork-record
triple

 All records within a row are stored in the same object

 All records within a column are stored in the same fork

 An entire row or column can be created or removed atomically

 Without ASG features, and additional mapping index is required to access
rows and columns

 Since ASG records can have zero-length data, there can be empty cells in
the database

18

Column:fork 0 Column:fork 1 Column:fork 2 Column:fork 3

Shard:object 1
Row:record 0 Alice Bob Brad Charles

Row:record 1 Smith Springfield

Shard:object 2 Row:record 0 111-1111 144-1144 321-4321

How to use ASG for common storage models? (III)

 ASG object-fork-record structure and explicit location control
feature enable to implement HPC checkpointing methods

 Existing checkpointing methods

– N-N

• ASG storage model exposes the location information of any entity to higher-
level applications

• Applications can use the location information to balance the metadata load
across the system without talking to an additional server

• Object attributes are eliminated in the ASG storage model that further
simplifies metadata management

– N-1

• Conditional operations and versioning are useful to order writes to a shared
checkpoint file

• Applications can concurrently and atomically write to a shared checkpoint
file

• No need to use any locking methods

19

Related Work

Existing work Feature

NASD
Variable-length objects replacing
fixed-length traditional blocks

OSD+
Adds dedicated directory objects on
top of T10

Panasas File System
Lustre
Ceph

Built on object-based storage

Ursa Minor
Supports versioned writes based on
timestamps

Datamods
Extends existing storage system
services to support complex data
models

OSC’s PVFS-OSD
Maps PVFS on top of an object
storage emulation

VSAM
Supports both fixed and variable
length records

NTFS Forks are similar to ASG records

Amazon SimpleDB
Amazon DynamoDB
Redix
Hyperdex

Support for conditional operations

20

Basis for our work Feature

TOSD
Atomicity, versioning and
commutativity

Goodell et al.
Extended POSIX API with data
objects

Carns et al. Optimistic coordination

Conclusion & Future Work

 ASG storage model unifies the features necessary to support
common data models

 Common storage use cases can be implemented on top of the ASG
storage model using its structures and primitives

 More use cases can be supported using the ASG storage model

– Fault tolerance

• Recovery after a system failure can be more straight-forward using the
versioning feature of the ASG storage model

 Even more complex storage systems can be built on top of the ASG
storage model

21

Acknowledgments

 We would like to thank Matthew Curry, Geoff Danielson, Ruth
Klundt and Justin Wozniak.

 This material is based upon work supported by, or in part by U.S.
Department of Energy’s Oak Ridge National Laboratory and
included the Extreme Scale Systems Center, located at ORNL and
funded by the DoD in part by contract number 4000111689 ”Novel
Software Storage Architectures”. This work also was supported by
U.S. Department of Energy, under contracts DE-AC02-06CH11357.

22

